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Abstract. The northern pike (Esox lucius L.) is a commercially

important fish that forms freshwater and brackish

populations. While the first ecotype is still quite abundant, the

second has suffered rapid declines in recent years.

Populations inhabiting the Baltic coastal waters of Poland

have been supported by stocking programs since the late

1990s. This study describes a multiplex microsatellite

(msDNA) assay consisting of 12 loci divided conveniently into

two amplification sets (Elu78, Elu87, B451, Elu37, B457,

B16, B25, and Elu19, Elu76, B422, Elu2, Elu7). The assay

was optimized for genetic analyses of freshwater and brackish

populations. These multiplexes were successfully executed to

obtain the genetic profiles of 668 individuals from 16

populations (Poland and Germany). The average number of

alleles was equal to 10.4, whereas the observed heterozygosity

per locus ranged from 0.18 to 0.89, with the average value of

0.64. The probability of the identity of the marker sets

indicated the high power of identification of unique

genotypes. Therefore, this molecular tool can be used to

describe the genetic variability of populations, select the

proper source of breeding material, and monitor the progress

of stocking efforts in genetic conservation projects of this

species.

Keywords: Conservation genetics, brackish and

freshwater ecotypes, microsatellite loci (msDNA),

multiplex PCR, northern pike (Esox lucius)

Introduction

The northern pike, Esox lucius L., is one of the most

commercially important fish species, and it inhabits

both freshwater and brackish ecosystems. Therefore,

two such ecotypes can be distinguished among these
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fish (Laikre et al. 2005a, 2005b, Larsen et al. 2005,

Larsson et al. 2015). Populations which have

adapted to low salinity water conditions in Europe in-

habit mainly coastal waters of the Baltic Sea and are

considered more vulnerable than their freshwater

counterparts (Wennerström et al. 2017). Over the

last 30 years, constant declines in E. lucius coastal

populations have been observed (Laikre et al. 2005a,

2005b, Mickiewicz and Wo³os 2012, Larsson et al.

2015). This problem has not only been noted in Po-

land, but also in Denmark and Sweden. For example,

in the Puck Bay (Poland) during the 1960s and

1970s, this species was caught in quantities of 40–50

tons a-1, while during the 1990s it was noted very

rarely in catches (Kruk-Dowgia³³o et al. 2008). In-

creasing water pollution and overexploitation can

play key roles in population declines as has been

noted in other threatened fish species such as stur-

geon (Acipenser oxyrinchus Mitchill) (Moore et al.

2014) or salmon (Salmo salar L.) (Popoviæ et al.

2014). Whenever a straightforward species restora-

tion and maintenance plan is needed, genetic moni-

toring can be an optimal strategy, especially when

designing long-term supporting breeding programs.

Such programs have been implemented successfully

with other fish species, i.e., delta smelt, Hypomesus

transpacificus McAllister (Fisch et al. 2013) and ana-

dromous steelhead, Oncorhynchus mykiss

(Walbaum) (Araki et al. 2007).

Microsatellite loci (msDNA) are still one of the

most popular markers applied in population and

conservation genetics studies (Guichoux et al. 2011).

They consist of one to six nucleotide motifs in tan-

dem repeats. Microsatellites are characterized by ele-

vated mutation rates that usually make them highly

polymorphic (Guichoux et al. 2011). Because of their

neutral variation, msDNA loci are useful in genetic

fingerprinting and mapping, parentage and kinship

identification, migration and demography (i.e., bot-

tleneck identification), polymorphism, and in identi-

fying the structure and effective size of population

studies (Putman and Carbone 2014). Their applica-

tion in multiplex PCR makes them not only a feasible

and much less time-consuming but also a relatively

inexpensive molecular tool, contradictorily to the

amplification of one product in a single reaction or

high throughput sequencing (Guichoux et al. 2011).

They are rationally inexpensive in comparison to

other molecular markers (Ekblom and Galindo

2011) that can be analyzed either using

chromatograms like in the case of msDNA loci (i.e.

SNPs) or by applying NGS sequencing. What is

more, such large data sets are bioinformatically labo-

rious and complicated to handle. Therefore, in some

studies, like genetic monitoring programs that sup-

port the management of stocking and introductions,

which usually require the analysis of hundreds or

thousands of individuals, applying a relatively small

marker set is sufficient to obtain satisfactory results

and permits such projects to be economically afford-

able. To date, many microsatellites have been devel-

oped for non-model organisms, which is one of the

most important arguments for utilizing these mark-

ers—it makes them a universal and convenient mo-

lecular technique for population genetics projects

(Guichoux et al. 2011).

Thus, unsurprisingly, the first utilization of this

method was recently presented by Ouellet-Cauchon

et al. (2014) for a landscape genetics study of E.

lucius populations from Lake Ontario and the St.

Lawrence River in Canada. In this study four sepa-

rate multiplex reactions for the amplification of 22

msDNA loci were constructed. Three years later, an

application of the next four different multiplex sets

was proposed by Gandolfi et al. (2017) in which 17

msDNA loci were amplified for genetic introgression

studies of both E. lucius and Esox flaviae (southern

pike) in Italy. In more geographically diverse popula-

tions (including possible observations of genetic dif-

ferences between brackish and freshwater

populations), some microsatellite markers, which

were formerly considered to be polymorphic and un-

biased, might unexpectedly become monomorphic

or burdened with null alleles (Larsen et al. 2005,

Putman and Carbone 2014). Consequently, the ap-

plication of various multiplex microsatellite assays

provides a wider spectrum of tools that can easily be

chosen. In particular, this is important for E. lucius

population genetic studies since this species has yet
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to be studied in depth, and this information may

prove to be useful.

This paper presents a solicitously arranged and

optimized multiplex PCR assay that can be applied in

fine-scale genetic analyses of either brackish or

freshwater E. lucius populations. This method was

developed for genetic population analyses that were

included in a species restoration project in Poland.

The assay is based on 12 highly polymorphic

microsatellite markers arranged in two sets for load-

ing on two sequencing panels.

Materials and methods

E. lucius samples were collected at 16 brackish and

freshwater locations in Poland and Germany

(Supplement 1; permission for material collection

was obtained from the local authorities). Fresh sam-

ples consisted of fragments of dorsal fins preserved

in 96% ethanol and stored at 4°C. DNA from sam-

ples (N = 668) was extracted using the Wizard DNA

(Promega) and DNA Mi-blood (Metabion) kits ac-

cording to the manufacturers’ protocols. The DNA

was suspended or eluted with sterile double-distilled

water to a final volume of 100 µl and stored at -20°C.

The DNA quality was tested with 1% agarose gel

electrophoresis in 1 x TBE buffer, whereas the aver-

age concentration was estimated using

a spectrophotometer (NanoDrop ND – 1000 Tech-

nologies®).

Before 2014, 51 E. lucius microsatellite loci had

been described in the literature (Miller and

Kapuscinski 1996, 1997, Hansen et al. 1999,
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Figure 1. The msDNA multiplex assay acquired for the Esox lucius, divided into two amplification sets (Set 1 and Set 2). The obtained al-
lele size ranges (positioned above the colored bars; (bp)) and optimized primer concentrations (marked inside the bars; (µM)) are given for
each of the amplified loci. Bars are colored according to the fluorescent dyes (6-FAM (blue), HEX (green), TAMRA (yellow), or ROX (red),
respectively) that were applied for the forward primer labelling.



Senanan and Kapuscinski 2000, Launey et al. 2003,

Aguilar et al. 2005, Jacobsen et al. 2005, Wang et al.

2011). For the multiplex optimization, 16 msDNA

markers were selected primarily from those previ-

ously published. The selection criteria were as fol-

lows: high polymorphism, simple repeats, and

published allele length according to which the mark-

ers could be assigned to two PCR reactions. There

was also a greater inclination to accept loci that were

optimized for populations located in latitudes similar

to the populations under study. Using FastPCR

v.3.8.41 software (Kalendar et al. 2009), the compat-

ibility of the chosen primer pairs was confirmed in

silico. Furthermore, potential primer-dimer forma-

tions were tested using default parameters. The PCR

reactions for microsatellite amplification were per-

formed with forward primers labelled with one of the

following fluorescent dyes: 6-FAM, HEX, TAMRA,

or ROX (Figure 1). First, the amplification of selected

loci was tested using two different samples. Some of

the markers (planned for: Set 1 – B259; Set 2 – B24,

Elu64, B289) gave very weak products in the PCR re-

actions, and, thus, they were rejected from the assay.

Considering all these aspects, 12 msDNAs were fi-

nally included (Table 1). The optimized reaction mix-

ture (10 µl) contained approximately 10-50 ng DNA,

1 x MasterMix (Qiagen Multiplex Kit), and primers

at the concentrations shown in Figure 1.

The reactions consisted of an initial denaturation

step at 95°C for 15 min, followed by 35 cycles of 30 s

at 94°C, annealing for 90 s at 61.5°C (Multiplex 1) or

63°C (Multiplex 2), and extension of 30 s at 70°C,

with the final extension step of 30 min at 60°C. The

PCR products were electrophoresed commercially

(Oligo.pl, IBB, Warsaw, Poland) on an ABI3730/xl

genetic analyzer (Applied Biosystems). Allele sizes

were scored against the GeneScan LIZ 600 size stan-

dard (Applied Biosystems) using PeakScanner v.1.0

(Applied Biosystems).

Potential genotyping errors that might have been

the result of stuttering and allelic dropouts were

checked with MICRO-CHECKER v 2.2.3 freeware

(Van Oosterhout et al. 2004) for each of the studied

populations using 1,000 iterations and a 95% confi-

dence interval (CI). The frequency of null alleles (AN)

was estimated using 1,000 randomizations and

a 95% CI using Genepop v. 4.2 (Raymond and

Rousset 1995) according to the Brookfield 1 method

(Brookfield 1996) and FreeNa software (Chapuis and

Estoup 2007), which implements the expecta-

tion-maximization (EM) algorithm (Dempster et al.

1977) with a bootstrap resampling over loci (number

of replicates) fixed to 25,000. We used Arlequin v.

3.5.1.2 (Excoffier and Lischer 2010) to test for link-

age disequilibrium (LD) using 1,000,000 permuta-

tions. The polymorphic information content (PIC) of

the studied loci was calculated using Cervus v. 3.0

(Kalinowski et al. 2007), and the average polymor-

phism (P) across all the markers used was calculated

with GenAlEx v.6.5 (Peakall and Smouse 2006). The

inbreeding coefficient (FIS) per locus was calculated

using Genepop v. 4.2. Probabilities of identity (PI and

PIsibs), the number of alleles (NA), and the expected

(HE) and observed (HO) heterozygosities were calcu-

lated using GenAlEx v.6.5.

Results and Discussion

The two multiplexes developed were used to obtain

microsatellite profiles of 668 individuals belonging

to the 16 E. lucius populations located in Poland and

Germany (Supplementary 1). The amplification ef-

fectiveness expressed by the total percentage of am-

plifications per locus was high and on the average

equal to 98.45% (Table 1). Manual evaluation of the

chromatograms proved them to be of good quality

(lack of background noise and non-specific picks;

Supplementary 2). Despite the large sample size, no

loci product size overlapping was detected. The ob-

served allele sizes of the studied loci showed some

deviation when compared to data in the literature. An

examination of allele frequencies indicated the exis-

tence of a few dominating alleles across the

Elu-markers and a more normalized distribution

with the B-markers (Supplementary 3). An auto-

mated examination of genotypes also failed to pro-

vide any evidence of scoring errors or large allele

dropouts, although for some of the analyzed loci, the
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presence of null alleles was observed, especially for

B16 and Elu2 (Table 1). However, only for locus B16

was this burden repetitive across almost all the stud-

ied populations, which was in contrast to Elu2, for

which only a few populations exhibited this bias.

These estimates for both markers were above the

level assumed to be intermediate (AN > 0.19)

(Chapuis and Estoup 2007). Since the issue of null

alleles has not been reported before for these mark-

ers (Larsen et al. 2005, Pedreschi et al. 2013), we be-

lieve that this is probably a characteristic of the

studied populations rather than the loci per se.

The test for linkage disequilibrium showed that

the microsatellite markers studied are not linked

with each other. Furthermore, none of the loci pairs

were repeatedly linked significantly across the 16

populations examined. The values of the probability

of the identity of the markers set were 5 × 10-17 (PI)

and 1 × 10-5 (PIsibs), which indicated the high power

of identifying unique genotypes. The average PIC

value of all the loci studied was 73% (± 22% SE);

however, the P value calculated as a percentage of

polymorphic loci across loci and populations was

higher at 98.44% (± 0.84% SE). The average NA

value was 10.4 (Table 1). The observed

heterozygosity per locus ranged from 0.18 (± 0.03

SE) to 0.89 (± 0.02 SE) at an average value of 0.64.

These results are similar to those obtained when

other European and Canadian E. lucius populations

were tested using the same msDNA loci as in this

study (Miller and Kapuscinski 1997, Hensen et al.

1999, Senanan and Kapuscinski 2000, Aguilar et al.

2004, Jacobsen et al. 2005, Laikre et al. 2005a,

Larsen et al. 2005, Bosworth and Farrell 2006,

Ouellet-Cauchon et al. 2014, Gandolfi et al. 2017).

In the present study, for all individuals treated as

a single population, the average NA value was 24.3

(± 4.05 SE), with HO = 0.65 (± 0.05 SE). Therefore,

the results indicated the usefulness of the estab-

lished msDNA assay for genetically characterizing

populations (i.e., genetic structure, isolation by dis-

tance, or effective population size estimations). The

results of genetic polymorphism and structure of the

populations described will be discussed in a separate

work.

Multiplexing msDNA markers requires using

challenging strategies (optimizing primer concentra-

tions and annealing temperatures while considering

clearly separated loci ranges and avoiding artefact

amplification), notably when maximizing the num-

ber of polymorphic loci in a single PCR reaction

(Guichoux et al. 2011). Thus, in summary, the multi-

plex assay presented will prove to be both a cost and

time efficient molecular tool in population genetics

studies and in conservation projects for E. lucius pop-

ulations. It should prove very useful in describing the

genetic diversity and structure of brackish and fresh-

water populations with the aim of supplying optimal

solutions in the selection of populations that are ge-

netically the closest for the stocking and reintroduc-

tion of E. lucius populations in the Baltic and North

sea basins. In cases when data for more than 12 loci

are required, i.e., relatedness assessments, it is rec-

ommend to combine the previously published multi-

plex assays (Ouellet-Cauchon et al. 2014, Gandolfi

et al. 2017) in the analysis. The multiplex assay pre-

sented in this paper combines most of the msDNA

markers utilized in the most recent studies of E.

lucius populations (Ouellet-Cauchon et al. 2014,

Bekkevold et al. 2015, Larsson et al. 2015, Gandolfi

et al. 2017), so, as suggested by Wennerström et al.

(2017), it is a convenient tool for comparative analy-

ses.
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msDNA loci (Set 1 and Set 2) for genetic analyses of the
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amplified products of this locus (additionally high-

lighted TAMRA dye exhibits a tendency to raise the
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